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A. V. Lyulintsev (Saint Petersburg State University, Saint Petersburg, Russia).
On some martingale constructions for PSI-processes. 1

Let ξ0, ξ1, . . . be a sequence of random variables (r.v.’s), Π(t) be a standard
Poisson process independent of these r.v.’s, and λ > 0 be a fixed constant (inten-
sity). A PSI-process (a Poisson stochastic index process) is defined as ψλ(t) = ξΠ(λt)

(see [1]).
We study joint martingale properties of the PSI–process ψλ(t) and the integrated

PSI-process Ψλ(t) =
∫ t

0
ψλ(s) ds (see, e.g., [2]).

Theorem. Let ξ0, ξ1, . . . be a sequence of independent and identically distributed
(i.i.d.) r.v.’s, Eξ0 = 0, λ > 0. Let a filtration F be naturally generated by a Markov
pair (ψλ,Ψλ), i.e., Ft = σ{(ψλ(s),Ψλ(s)), s ⩽ t}. Then the process λΨλ(t) + ψλ(t),
as t ⩾ 0, is a martingale relative to F. Moreover,

(1) E{λΨλ(t) + ψλ(t) | ψλ(s), Ψλ(s)} = λΨλ(s) + ψλ(s), s ⩽ t,

since (ψλ,Ψλ) is a Markov pair.

As a corollary, the case of stochastic intensity λ > 0 a.s. is considered.
In the case Dξ0 < ∞, the principal numerical characteristics of the martingale

λΨλ(t) + ψλ(t) are evaluated.
The trajectories of this martingale are modeled, in particular, for the cases of

normal and Rademacher distribution ξ0.
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A.P. Makarova (S.M. Kirov Military Medical Academy, St. Petersburg, Rus-
sia), V.A. Gorlov (Voronezh, Russia), A.V. Makarova (Air Force Academy
named after N. E. Zhukovsky and Yu.A. Gagarin, Voronezh, Russia). Probabilistic
modeling of network clusterization.

An improved self-defined network (SDN) can be realized with the help of available
algorithms and protocols [1]. In order to find the most efficient partition of the
network, consider a partition M ∈ Φ of n vertices into m clusters (Φ is the set of all
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possible partitions of the vertex set of a graph V ). We define some r.v. Q assuming
values from 1 to m with probabilities qi, i = 1, . . . ,m. For each cluster i of the
network, we define some r.v. P i assuming values from 1 to ni with probabilities pki ,
where k = 1, . . . , ni. As a result of the study, we introduce the expanded partition
quality indicator L(M) defined as the supremum of lengths of code words defining
the partition quality M :

L(M) =

m∑
i=1

qi ln

( m∑
i=1

qi

)
− 2

m∑
i=1

qi ln qi −
n∑

α=1

pα ln pα

+

m∑
i=1

(
qi +

∑
α∈i

pα

)
ln

(
qi +

∑
α∈i

pα

)
.

Theorem. With this definition L(M) in the algorithm, the malfunction proba-
bility of the network decreases, the performance indicator increases, and the “network
life time” increases in general.

REFERENCES

[1] V. A. Gorlov and A. V. Makarova, Stochastic analysis methods in SDN networks modelling,
Commun. Stoch. Anal., 14 (2020), pp. 13–18.

G.V. Martynov (Institute for Information Transmission Problems of the Rus-
sian Academy of Sciences (Kharkevich Institute), Moscow, Russia). The Cramér–
von Mises test for parametric families of distributions.

We consider the problem of testing the hypothesis that the distribution function
of an observed r.v. belongs to a parametric family of distributions. To this end,
the Cramér–von Mises test, the Kolmogorov–Smirnov test, and other tests can be
applied. It is known that the limit distributions of these statistics do not depend on
the unknown parameters of the observed r.v.’s for families of distributions of types
F = {F ((x −m)/s)} and R = {R((x/θ)κ)} (see [1], [2], [3]). Here, we consider the
family G = {G(x/θ, κ), θ, κ > 0}.

Theorem. Under certain regularity conditions on the family G, the limit distri-
bution of the Cramér–von Mises statistic depends on at most one parameter κ of the
family.

In particular, for the families R (see [3]), the distribution of the statistic does
not depend at all on the parameters, and, for the family of gamma distributions, it
depends only on the parameter κ.
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M.V. Melikian (Lomonosov Moscow State University, Russia). Large system
of oscillators with ultralocal action of a random stationary field.

We consider a finite system of point particles of unit mass on the real line R,
where a particle with a fixed number n is subject to an external force f(t), which
is a stationary in a wide sense centered random process with continuous covariance
function B(s) and spectral measure µ(dx) (as in [1]).

Theorem 1. Let a measure µ be such that the covariance function of the random
process under consideration can be written as B(t)=

∫
R
eitxb(x) dx. Then the mean

energy of the entire system is bounded in time if at least one of the following conditions
is met :

(1) The support of the function b(x) is disjoint from the set {νk, k = 1, . . . , N};
(2) (uj , en)

2 = 0 for all j such that νj ∈ supp b(x);
(3) if there is a single eigenvalue νj lying in supp b(x) and such that (uj , en)

2 ̸=0,
then νj = 0 and b(0) = b′(0) = 0.

Otherwise, the mean energy grows in time, and there exists a positive constant C
such that E(H(t)) ∼ Ct2.
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V.V. Misyura (Don State Technical University, Rostov-on-Don, Russia),
E.V. Misyura (Plekhanov Russian State University of Economics, Moscow, Russia).
An application of order statistics for construction of one-step forecasting
of times series.

According to [1], the left and right boundaries of a one-step interval forecasting
of the times series hk, k = 1, . . . , N , are formed, respectively, by the first k smallest
order statistics and the statistics of order of k + 1 to N obtained by shifting with
window size τ , 1 < τ < N , and with subsequent ordering. A quantile regression
is proposed for determination of weights, because the interval estimate (hl, hk), i ⩽
l < k ⩽ i + τ − 1, for the median Me(h)i+τ−1

i of the random sequence (h)i+τ−1
i =

{(h)i, hi+1, . . . , hi+τ−1}, i ⩽ l < k ⩽ i + τ − 1, which specifies a symmetric interval
with confidence level 1− 2α with k = τ − l − 1 + i, is used for target variables. The
following theorem justifies this choice of target variables.

Theorem. Let {H(1), H(2), . . . ,H(τ)} be order statistics for a sample
{H1, H2, . . . ,Hτ}, and let r and s be such that P(H(r) < hp < H(s)) = 1 − 2α is
a given confidence probability and the interval (H(r), H(s)) contains the unknown
quantile hp = F−1(p), 0 < p < 1. Then the probability P(H(r) < hp < H(s)) does not
depend on the unknown distribution function of the observed r.v. FH(h).
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A.V. Nikitina, V.B. Dolgov (Don State Technical University, Rostov-on-Don,
Russia). Allelopathic interaction of hydrobionts based on a stochastic
approach. 2

Constructive methods are proposed for compensation of the a priori uncertainty
arising from the nonstationary and stochastic nature of ecological systems. The differ-
ence scheme for the homogeneous equations of the mathematical model of biological
kinetics of a shallow water body (in the case of the Sea of Azov used as an example)
with due account of the allelopathic interaction of aquatic organisms has the form [1]

Cn+1 − Cn

τ
+AxC

n +AyC
n +AzC

n+σ = 0,

where C is the impurity concentration; τ is the time increment; n is the time layer
number; σ is the layout weight, σ ∈ [0, 1]; and Ax, Ay, Az are discrete analogues of
the transfer operators along the coordinate axes Ox, Oy, Oz:

(AxC)i = ui+1/2
Ci+1 − Ci

2hx
+ ui−1/2

Ci − Ci−1

2hx

− µi+1/2
Ci+1 − Ci

h2x
+ µi−1/2

Ci − Ci−1

h2x
, 0 ⩽ i ⩽ N,

where hx is the step of spatial variable, N is the number of steps, µ is the diffusion
coefficient, and u is the water flow velocity. The discrete operators Ay, Az have similar
representations.

Theorem. Under the condition τ ⩽
(
max(2µ/h2x + 2µ/h2y)

)−1
, the difference

scheme is conditionally stable, and ∥Cn+1∥ ⩽ ∥C0∥.
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A.K. Nikolaev (St. Petersburg Department of Steklov Mathematical Institute
of Russian Academy of Sciences, St. Petersburg, Russia). On the probabilistic
representation of the resolvent of the two-dimensional Laplace operator.

We consider the family of random linear operators

(1) Rt
λf(x) =

∫ t

0

eλτ
[
1

2π

∫
S1

f(x− ∥w(τ)∥ · θ) dS(θ)
]
dτ, Reλ ⩽ 0,

where w(τ), τ ⩾ 0, w(0) = (0, 0), is a two-dimensional Wiener process.

The corresponding operator family arises in construction of a probabilistic rep-
resentation of the resolvent of the two-dimensional Laplacian. We show that, with
probability 1, the operators of this family are integral operators in L2(R

2). We also
study the kernels of these operators and construct an analogous operator family for
the case Reλ ⩾ 0.

2Supported by the Russian Science Foundation (grant 21-71-20050).
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Theorem. (1) If λ ∈ C, Reλ < 0, then(
−1

2
∆− λI

)−1

f(x) = E[R∞
λ f(x)]

for all f(x) ∈ L2(R
2).

(2) If λ ∈ C \ σ(∆/2), Reλ ⩾ 0, then(
−1

2
∆− λI

)−1

f(x) = (L2) lim
t→∞

E[Rt
λf(x)]

for all f(x) ∈ L2(R
2).

(3) If λ ∈ σ(−∆/2), then the equality in (2) holds for all f(x) ∈ D(−∆/2−λI)−1.

E.A. Pchelintsev, S. S. Perelevsky (Tomsk State University, Tomsk, Russia).
On estimation for the trend coefficient of a diffusion process from discrete
time observations. 3

On a probability space (Ω,F ,P), consider the stochastic differential equation
dyt = S(yt) dt + σ(yt) dwt, 0 ⩽ t ⩽ T , where (wt)t⩾0 is a Wiener process, the ini-
tial value y0 is a given constant, σ( · ) is an unknown diffusion coefficient (the nui-
sance parameter), and S( · ) is an unknown function from the class Σ defined in [1].
The problem is to estimate the trend S(x), x ∈ [a, b], from discrete observations
(ytj )0⩽j⩽N , tj = jδ, with frequency δ = δT and sample size N = NT . A model selec-
tion procedure S∗ is proposed based on improved weighted least squares estimates
(S∗

λ)λ∈Λ introduced in [2]. These estimates are shown as having a better accuracy
than those produced by the least squares method. The following theorem is proved.

Theorem 1. The mean-square risk of the model selection procedure S∗ satisfies
the nonasymptotic sharp oracle inequality

ES∥S∗ − S∥2 ⩽ A(ρT )min
λ∈Λ

ES∥S∗
λ − S∥2 + BT

δT ρT
,

where ∥ · ∥ is the norm in L2[a, b], A(ρT ) → 1, and T−ϵBT → 0 for any ϵ > 0 as
T → ∞.

Using Theorem 1 and the lower bound for the risk from [1], it is shown that the
above estimate S∗ is asymptotically efficient.
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A.Yu. Perevaryukha (St. Petersburg Federal Research Center of the Russian
Academy of Sciences,, St. Petersburg, Russia). Invasion modeling with stochas-
tically perturbed delay. 4

In rapid invasions and infections it may happen that the reached population size
N(t) → K is not stable. The stochastic perturbation of dynamics becomes signifi-
cant if the confrontation is activated in a state critical for the environment. When
approaching the threshold of destruction of the environment, an increase in counter-
action is observed, which is typical of the body’s immune response. A counteraction is
known to increase as the environmental destruction threshold is approached, which is
a typical response of the human immune system. The activation time is important and
variable but does not exceed τ1. Assume that τ1 is varied by an r.v. γ in a bounded
region. We propose the following invasion model with delay (t − τ1γ) perturbed by
a uniform r.v.:

(1)
dN

dt
= rN(t) ln

(
K

N(t− τγ)

)
− δN2(t− τ1γ)

(J −N(t))2
−qN(t), δ > q, γ(ω) ∈ [1, 2].

A sharp transition to a deep population crisis N(t) → 0 + ϵ takes place as N(t)
approaches the threshold J , N(0) < J < K. A scenario for overcoming the crisis with
formation of oscillations N(t) → N∗(t), maxN∗(t) < J , depends on stochastic time
factors. According to (1), the population is guaranteed to become extinct at the local
area with increased reproduction potential r.

Theorem. There exists r = r such that the event limt→tN(t; r τ) = 0 has positive
probability, and there exist r̂ > r and t <∞ such that the above event is realized with
probability 1 (r̂ is the critical threshold of reproductive activity). Model (1) describes
scenarios in which the immune system struggles with an infection, which may become
chronic for N(t) ≪ J . The immune response is not completely predetermined due to
nondeterministic duration of the immune activation stages. The antigen presentation
times and the duration of selection of suitable “naive” lymphocyte cells are varied.

G.A. Popov (Lomonosov Moscow State University, Moscow, Russia). Limit
distributions of random walks on multidimensional lattices. 5

We prove a limit theorem, as t→ ∞, for the size µt of population of particles in
a critical branching random walk (BRW) on Z with transition probabilities p(t, x, y) ∼
h1,α t

−1/α, where h1,α > 0 and α ∈ [1, 2). The survival probability for the population
of this BRW was studied, e.g., in [1].

Theorem. For a critical recurrent BRW, for any z > 0 and x ∈ Z,

lim
t→∞

Ex[e
−zµt | µt > 0] = 1−

√
1− e−z.

REFERENCES

[1] A. Rytova and E. Yarovaya, Survival analysis of particle populations in branching random
walks, Comm. Statist. Simulation Comput., 50 (2021), pp. 3031–3045, https://doi.org/10.1080/
03610918.2019.1618870.

4Supported by the Russian Science Foundation (grant 23-21-00339).
5Supported by the Russian Foundation for Basic Research (grant 20-01-00487).

https://doi.org/10.1080/03610918.2019.1618870
https://doi.org/10.1080/03610918.2019.1618870


156 7TH INTERNATIONAL CONFERENCE ON STOCHASTIC METHODS, II

E.O. Rahimbaeva, A.M. Atayan (Don State Technical University,
Rostov-on-Don, Russia). Processing of noisy images and data based on
recursive filtration. 6

Consider the mathematical model of biogeochemical cycles of a shallow water
body [1] having the form

∂qi
∂t

+ u
∂qi
∂x

+ v
∂qi
∂y

+ w
∂qi
∂z

= div(k grad qi) +Rqi ,

where qi is the assembly of the ith component [mg/l]; i ∈ M , M = {F1,F2,F3,PO4,
POP,DOP,NO3,NO2,NH4,Si}; {u, v, w} are the components of the flow velocity vec-
tor H2O [m/s]; k is the turbulent exchange coefficient [m2·s]; and Rqi is the source
function of biogenic components [mg/l·s)]. This equation is augmented with corre-
sponding initial and boundary conditions.

The optimal solution to the problem of variational assimilation of data for the
mathematical model of biogeochemical cycles is shown to be stable based on a study
of the sensitivity coefficients as norms of the response operators.
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N. Ratanov (Chelyabinsk State University, Chelyabinsk, Russia). On Kac–
Ornstein–Uhlenbeck processes. 7

A connection is established between Markov-modulated Lévy processes, existence
of invariant distributions, and exponential functionals. Necessary and sufficient con-
ditions for existence of invariant distributions for such processes are obtained. We
also prove the following result that illustrates [1].

Theorem. Let ε(t) be a two-state Markov process. The stationary distribution

(if it exists) of the process ⟨Z, ε⟩, as given by the equation Z(t) = z +
∫ t

0

(
aε(u) −

cε(u)Z(u)
)
du, is uniquely defined by the distribution of the exponential functional

(see [2])

G =

∫ ∞

0

exp

(
−
∫ t

0

cε(u) du

)
aε(t) dt.
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D.B. Rokhlin (Southern Federal University, Rostov-on-Don, Russia). On in-
centive pricing algorithms under the lack of information about agent util-
ities. 8

We consider a leader, who prices a resource or goods and tries to change the behav-
ior of selfish agents in a desired way. In particular, we consider a corporation produc-
ing and selling d commodities and consisting of n production and m sales divisions.
Let F (x, y) be the income of the corporation depending on vectors x, y ∈ Rd, which
describe the amounts of commodities to be produced and sold, and let (x̃(λ), ỹ(λ))
be division reactions to transfer prices within the corporation. The following recur-
rence formula was obtained by applying the algorithm from [1] to the dual problem
of income maximization:

λt = −
∑t−1

j=1 ∆z̃(λj)√∑t−1
j=1 ∥∆z̃(λj)∥2

, λ0 = 0; ∆z̃(λ) :=

n∑
i=1

ỹi(λ)−
m∑
i=1

x̃i(λ).

Theorem. Let F ∗ be the maximum income. Then the average transfer price
vector λT = (1/T )

∑T
t=1 λt satisfies

F ∗ − F (z̃(λT )) ⩽ CT−1/4, ∥∆z̃(λT )∥ ⩽ CT−1/4.
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O.V. Rusakov (Saint Petersburg State University, Saint Petersburg, Russia),
Yu.V. Yakubovich (Saint Petersburg State University, Saint Petersburg, Russia).
Ambit, trawl, and PSI processes. 9

By a PSI (Poisson stochastic index) process, here we mean the following subor-
dinator: ψ(t) = ξΠ(λt), t ⩾ 0, where (ξ) = ξ0, ξ1, . . . is a sequence of i.i.d. r.v.’s, and
Π is a standard Poisson process independent of (ξ), λ > 0. Assume that ξ0 belongs
to the attraction domain of some symmetric α-stable law, α ∈ (0, 2]. Consider the
independent copies of the PSI processes (ψj), j ∈ N.

Theorem. The following convergence of finite-dimensional distributions holds:

(1)
1

N1/α

N∑
j=1

ψj(t) ⇒ Uα(t), N → ∞, t ⩾ 0.

Here Uα(t) =
∫
Aη(t)

dLα(u, v), where Lα is a Lévy basis (see [1]) on R+ × R with

symmetric α-stable law and structural Lebesgue measure. The so-called ambit sets
(see [1]) are defined by Aη(t) = {(x, s) : s ⩽ t, 0 ⩽ x ⩽ η(s − t)}, t ∈ R, and, in our
case, i.e., for the limits of PSI processes, η(−r) = λ exp(−λr), r ∈ R+.

The limit process Uα is stationary, and it can be considered on R ∋ t. In the
notation of [1], the random process Uα is called a trawl process with monotonic trawl,
that is, the sets {Aη(t)}, t ∈ R.

8Supported by the Regional Mathematical Center of the Southern Federal University with the
agreement 075-02-2022-893 of the Ministry of Science and Higher Education of Russia.
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V.V. Rykov (Gubkin Russian State University of Oil and Gas (National
Research University), Moscow, Russia; Peoples’ Friendship University of Russia,
Moscow, Russia). On decomposable semiregenerative processes and their
application to double redundant renewable systems. 10

The following theorem is based on [1], [2].

Theorem. The Laplace transform R̃(s) of the reliability function R(t) of a redun-
dant system with arbitrarily distributed lifetime A(t) and recovery time B(t) of its units
has the form

R̃(s) =
(1− ã(s))(1 + ã(s)− ãB(s))

s(1− ãB(s))
,

where the modified Laplace–Stieltjes transforms of the distributions A(t) and B(t),

ãB(s) =

∫ ∞

0

e−sxB(x) dA(x), b̃A(s) =

∫ ∞

0

e−sxA(x) dB(x),

are introduced in parallel with the standard transforms ã(s) =
∫∞
0
e−sx dA(x), b̃(s) =∫∞

0
e−sx dB(x).
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D. S. Sergeeva (Voronezh State University, Voronezh, Russia). On global in
time solutions of one class of differential–algebraic equations with random
perturbations.

The following theorem extends some results of [1] and [2]. Let L̃ and M̃ be,
respectively, generated and nongenerated matrices. Consider the equations{

L̃DSξ(t) = M̃ξ(t) + f̃(t, ξ(t)),

D2ξ(t) = Θ(ξ),
(1) {

DSη
(1)(t) = Jη(1)(t) + f (1)(t, η(t)),

D2η
(1)(t) = Ξ.

(2)

Theorem. A necessary and sufficient condition that the forward and backward
flows generated by (1) be simultaneously complete and continuous at infinity is that
there exist positive smooth proper functions u(t, x) and u(t, x) on [0,∞) × Rd such
that (∂/∂t+A)u < C and (−∂/∂t+A)ũ < C for all (t, x) for some positive constants
C and C, where A and A are generators of the forward and backward flows generated
by (2).

10Supported by the Russian Foundation for Basic Research (grant 20-01-00575 a).
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M.M. Shumafov (Adyghe State University, Maikop, Russia), V.B. Tlyachev,
T.A. Panesh, and M.A. Havaja. On stability in probability of some
second-older stochastic differential equations.

Our theorems extend and supplement some results of [1], [2]. We give one of these
theorems.

Theorem. Suppose that there exist numbers b > 0 and c ∈ R such that, for
functions f(y), g(x), and σ(x), x ∈ R, the following conditions are satisfied :

(1) f, g, σ satisfy the Lipschitz condition on R;

(2) f(y)/y > b for all y ̸= 0, f(0) = 0;

(3) xg(x) > 0 for all x ̸= 0, g(0) = 0;

(4)
∫ x

0
g(s) ds→ +∞ as |x| → ∞;

(5) 0 < σ(y)/y < c2 for all y ̸= 0 and c2 < 2b, σ(0) = 0.

Then the trivial solution (x(t) ≡ 0, y(t) ≡ 0) of the stochastic Itô system

dx(t) = y(t) dt, dy(t) = [−f(y)− g(x)] dt+ σ(y) dw(t),

where w(t) is a one-dimensional Wiener process, is asymptotically stable in probability
in the large.
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A. R. Simonyan (Sochi State University, Sochi, Russia), E. I. Ulitina (Sochi
State University, Sochi, Russia). Virtual standby times in the Kleinrock model.

Consider the Kleinrock model [1], [2] with arrival rate a0, . . . , ar > 0 and the
distribution function of customer service Bk(x), Bk(+0) = 0, k = 1, . . . , r. Let wk(t)
be the virtual standby time of the kth customer at time t [1].

In the present note, we propose a new method for analysis of wk(t), k = 1, r,
t ⩾ 0.

For k = 1, . . . , r, s ⩾ 0, t ⩾ 0, the following equalities hold [2]:

ωk(s, t) = ωk(mk−1(s), t).

We set pk(s) = s−
∑k

i=1 ai(1−βi(s)), p
j
k(s) = s−

∑k
i=1 aij(1−βi(s)), k = 1, . . . , r,

j = k, . . . , r, s ⩾ 0. The following theorem holds.
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Theorem. For any k = 1, . . . , r, t ⩾ 0, s ⩾ 0,

ωk(s, t) = epk(s)t

{
1− s

∫ t

0

e−pk(s)uP (u) du

−
r∑

j=k+1

aj(1−βj(s))

∫ t

0

e−pk(s)v dv

∫ (bk/(bk−bj))(t−v)

0

e−pj−1
k (s)u duP(wj(v) < u)

}
,

where
∫∞
0
e−stP (t) dt = (mr(s))

−1, s ⩾ 0 (bk, mk(s), βk(s) are defined in [1]).
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N.V. Smorodina (St. Petersburg Department of Steklov Mathematical Institute
of Russian Academy of Sciences, St. Petersburg, Russia). On kernels of random
operators. 11

Let ξx(t) be the solution of the stochastic differential equation

dξx(t) = b(ξx(t))b
′(ξx(t)) dt+ b(ξx(t)) dw(t), ξx(0) = x.

In the space L2(R), consider the operator A = −(1/2)(d/dx)
(
b2(x)d/dx

)
+ V (x)

defined on the domain W 2
2 (R). We assume that the functions b(x), V (x) satisfy the

following conditions:
(1) V ∈ L1(R);
(2) b ∈ Cb2 and is separated from zero;
(3) there exists b0 > 0 such that limx→±∞ b(x) = b0;
(4) limx→±∞ b′(x) = limx→±∞ b′′(x) = 0;
(5)

∫
R
x2(|b(x)− b0|+ |b′(x)|) dx <∞.

From (1)–(5) it follows that the spectrum of the operator A consists of the inter-
val [0,∞) and, possibly, several negative single eigenvalues. By Pa we denote the
orthogonal projection onto the absolutely continuous subspace Ha of the operator A.
We also set A0 = APa.

For each λ satisfying Reλ ⩽ 0 we define the random operator Rt
λ by the formula

Rt
λf(x) =

∫ t

0
eλτ (Paf)(ξx(τ)) exp

{
−
∫ τ

0
V (ξx(s)) ds

}
dτ .

Theorem 1. (1) With probability 1, the operator Rt
λ is bounded by the integral

operator Rt
λf(x) =

∫
R
rλ(t, x, y)f(y) dy in L2(R); moreover, for Reλ < 0, the last

equality also holds for t = ∞.
(2) For all λ, t, x, the function rλ(t, x, · ) belongs to Wα

2 for any α ∈ [0, 1/2).

Theorem 2. (1) If Reλ < 0, then for any f ∈ Ha,

E

∫
R

rλ(∞, · , y)f(y) dy = (A0 − λI)−1f.

11Supported by the Russian Science Foundation (grant 22-21-00016).
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(2) If Reλ = 0 and λ ̸= 0, then, for any f ∈ Ha,

lim
t→∞

E

∫
R

rλ(t, · , y)f(y) dy = (A0 − λI)−1f.

V.N. Sobolev, A. E. Kondratenko (Lomonosov Moscow State University,
Moscow, Russia). Generalization of one Senatov’s result in the central limit
theorem.

The following theorem extends Theorems 4 and 5 of [1].

Theorem. Let ξ1, ξ2, . . . be symmetric i.i.d. r.v.’s with Eξ = 0, Dξ = 1, finite
moments of even orders m+2 ⩾ 2, and a characteristic function f(t) such that |f(t)|ν
is integrable on R for some ν > 0. Then, for the density pn(x) of the normalized sums
(ξ1 + · · ·+ ξn)n

−1/2, for n ⩾ max{m, ν} and x ∈ R,∣∣∣∣pn(x)− φ(x)

m/2∑
s=0

Cs
n

m−4+4s∑
l=4s

Θs,l

nl/2
Hl(x)−

θ
(λ)
m+2

nm/2
φ(x)Hl(x)

∣∣∣∣
≲

λ

(m+ 2)!

Eξm+2

nm/2

Bm+2√
2π

,

where φ(x) is the density, Bm+2 is the moment of order m + 2 of the standard nor-
mal distribution, Hl(x) = (−1)lφ(l)(x)/φ(x) is the Chebyshev–Hermite polynomial of
degree l, 0 ⩽ λ < 1, λ = max{λ, 1− λ}, and, for kj ⩾ 4,

θk =

[k/2]∑
j=0

(−1)j

2jj!

Eξk−2j

(k − 2j)!
, θ

(λ)
m+2 = θm+2−

(1− λ)Eξm+2

(m+ 2)!
, Θs,l =

∑
k1+···+ks=l

θk1 · · · θks .
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M. A. Stepovich, V.V. Kalmanovich (Tsiolkovsky Kaluga State Univer-
sity, Kaluga, Russia), D.V. Turtin (Ivanovo State University, Ivanovo, Russia),
E.V. Seregina (Kaluga Branch of Bauman Moscow State Technical University
(National Research University), Kaluga, Russia). On some results of mathemat-
ical modeling of diffusion processes due to interaction of charged particles
and/or electromagnetic radiation with semiconductor structures. 12

Earlier [1], we considered stochastic diffusion models and subsequent radiative
recombination of nonequilibrium minority carriers generated in homogeneous semi-
conductors by wide electronic or light beams [2]. In this note, for the mathemati-
cal models of diffusion and cathodoluminescence, we put forward estimates capable
of assessing the correctness of these models and, from a random variation in the
right-hand part of the differential diffusion equation, evaluate the changes in the solu-
tion of this equation and the changes in the cathodoluminescence parameters. Model

12Supported by the Russian Foundation for Basic Research (grant 19-03-00271).
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calculations were carried out for target parameters characteristic of promising mate-
rials of semiconductor optoelectronics.

REFERENCES

[1] M. A. Stepovich, E. V. Seregina, and D. V. Turtin, On some aspects of correctness and
stochastic features of mathematical models of diffusion and cathodoluminescence in semiconduc-
tors, abstract, Fourth International Conference on Stochastic Methods, Theory Probab. Appl.,
65 (2020), pp. 162–163, https://doi.org/10.1137/S0040585X97T989878.

[2] D. V. Turtin, M. A. Stepovich, V. V. Kalmanovich, and A. A. Kartanov, On the correctness
of mathematical models of diffusion and cathodoluminescence, Taurida J. Comp. Sci. Theory
Math., 50 (2021), pp. 81–100 (in Russian).

D.A. Suchkova, F. S. Nasyrov (Ufa State Aviation Technical University, Ufa,
Russia). On the Korteweg de Vries equation with noise in the variance and
in the nonlinear term.

Consider the Korteweg de Vries equation with noise in the form of a Stratonovich
stochastic integral

(1) dtu+ uux dt+ uxxx dt+ εuux ∗ dW (t) + εuxxx ∗ dW (t) = 0,

where ε > 0, u = u(t,W (t), x), u(0, 0, x) = u0, (x, t) ∈ R × [0, T ], and dtu =
ut dt+ uv ∗ dW (t).

Theorem 1. Any solution of (1) is represented as u(t,W (t), x) = φ(t+εW (t), x)
(see [1]), where W (t) is a standard Wiener process.

Corollary. A particular solution of (1) in the form of a solitary wave (soliton)
exists and is represented in the form (see [2])

(2) φ(t+εW (t), x) = A cosh−2

(
x− (A/3)(t+ εW (t))

∆

)
, A = const, ∆ =

√
12

A
.

Theorem 2. Any solution of (1) is represented as u(t,W (t), x) = φ(t+εW (t), x),
where W (t) is an arbitrary continuous with probability 1 random process or a contin-
uous deterministic function.
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A. I. Sukhinov (Don State Technical University, Rostov-on-Don, Russia),
S. V. Protsenko (A. P. Chekhov Taganrog State Institute (Taganrog Branch of
Rostov State University of Economics, Taganrog, Russia). Construction of
a turbulent mixing model for coastal systems based on statistical analysis
of expedition data. 13

A tray water model of turbulent mixing [1] is constructed. The vertical turbulent
exchange ratio is parameterized using experimental data obtained during the expedi-
tion using an ADCP Workhorse Sentine 600 ADCP. Readings are obtained from 17

13Supported by the Russian Science Foundation (grant 22-11-00295).
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Sea Azov stations with 1 s scanning frequency (128 measurements of each of the three
depth components of the velocity vector).

Experiments are performed for parameterization and determination of the turbu-
lent exchange coefficient based on statistically processed data:

ν = (0.41z)2 · 0.5

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

, ν = 0.5 (C∆)2

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

;

here, ν is the turbulent exchange coefficient in the vertical direction; u, v are time-
averaged pulsations of the velocity components of the water flow; C is an empirical
constant; and ∆ is the characteristic grid scale.
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A.N. Tikhomirov (Komi Scientific Center of Ural Branch of RAS, Syktyvkar,
Russia). Limit theorems for Laplace matrices and adjacency matrices of
random graphs.

Let A and L be, respectively, the adjacency and Laplace matrices of the weighted

random graph {V,E,W} with |V | = n, EWij=0, EW 2
ij=σ

2
ij , and P{(i, j)∈E}=p(n)ij .

Next, let λ1, . . . , λn and µ1, . . . , µn be the eigenvalues of the matricesA and L, respec-

tively. Consider the normalizing factor an := (1/n)
∑n

j=1

∑n
k=1 p

(n)
jk σ

2
jk and define

the empirical spectral distribution functions of the adjacency and Laplace matrices
Fn(x) := (1/n)

∑n
j=1 I{λj < x

√
an}, Gn(x) = (1/n)

∑n
j=1 I{µj < x

√
an}, respec-

tively, where I{A} is the indicator of event A. The following theorem extends some
results of [1].

Theorem. Let limn→∞ an = ∞, supn⩾1(max1⩽j,k⩽n pjkσ
2
jk/an) < ∞, and let

the following conditions be met : limn→∞(1/(nan))
∑n

j=1

∑n
k=1 |pjkσ2

jk − an/n| = 0,

lim
n→∞

1

nan

n∑
j=1

n∑
k=1

EX2
jkI{|Xjk| > τ

√
an} = 0.

Then Fn(x) and Gn(x) weakly converge in probability, respectively, to the semicircu-
lar law and to the free convolution of the distribution functions of the normal and
semicircular laws.
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M.S. Tikhov (National Research Lobachevsky State University of Nizhny Nov-
gorod, Russia). Quantile estimation of the distribution function using Bern-
stein polynomials.

Let X1, X2, . . . , Xn be latent i.i.d. r.v.’s with unknown continuous distribution
function F (x) and density function f(x) > 0, x ∈ (0, 1); let [0, 1] be the support of
this distribution; let ui = i/n, i = 0, 1, . . . , n, be the division points on [0, 1]; and let
Wi = I(Xi < ui) be the indicator of the event {Xi < ui}. We consider the problem
of estimation of a quantile of order 0 < λ < 1 of the distribution function F (x) from
the sample W(n) = {(ui,Wi), i = 0, . . . , n}. This problem comes from biology and is
known as the “dose–effect” dependence.

For complete samples, estimates of the distribution function F (x) were inves-
tigated in [1] using the Bernstein polynomials bk(n, x) = Ck

nx
k(1 − x)n−k. In [2],

the statistic F ∗
n(x) =

∑n
k=0Wkbk(n, x) was used as an estimator for F (x) from

a sample W(n). For a given 0 < λ < 1, we define xλ = inf{x : F (x) ⩾ λ},
x̂n,λ = inf{x : F ∗

n(x) ⩾ λ}. The statistic x̂n,λ is considered as an estimate for the
quantile xλ of order 0 < λ < 1 of the distribution function F (x) in the “dose–effect”
dependence. Let σ2 = λ(1− λ)/(4πf2(xλ)xλ(1− xλ)). The following result holds.

Theorem. Assume that F (x) has bounded third derivative and 0 < λ < 1 is
given. Then

x̂n,λ
p−−−−→

n→∞
xλ,

√
n (xn,λ − xλ)

d−−−−→
n→∞

N(0, σ2).
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G.A. Vlaskov (Don State Technical University, Rostov-on-Don, Russia).
On the algorithm of numerical simulation of electronic density of
stochastically convecting polar ionosphere.

In the continuity equation ∂Ne/∂t+ (v⃗ + v⃗st)∇Ne = q − βNe in [1], where Ne is
the electron density, β is the recombination ratio, and q is the ion formation function,
the field of transport velocities is split into the deterministic v⃗ and the stochastic
v⃗st components. The stochastic component is represented by the Wiener process
σ(x, t)W (t). In [1], an algorithm is given for evaluation of the electron density as
a random function based on the Monte Carlo method.

In the present note, we justify the use of σ(x, t). To this end, we analyze the data

from [2]. The fluctuations E⃗st can be as high as 25mV/m in the auroral zone and
5mV/m in the polar cap. This gives, respectively, vst = 500m/s and vst = 100m/s.
With 10 km for the typical scale L0, we get σ = 2500 for the auroral zone and σ = 500
for the polar cap.
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[2] N. P. Isaev, E. P. Trushkina, and N. P. Ossipov, Empirical Electric Field Models in
High-Latitude Ionosphere, preprint no. 51(936), IZMIRAN SSSR, Moscow, 1990 (in Russian).

T. A. Volosatova, N.V. Neumerzhitskaia, I. V. Pavlov, S. I. Uglich
(Don State Technical University, Rostov-on-Don, Russia). Development of
a model with random priorities.

For a model with random priorities, the following theorem extends some results
of [1], [2].

Theorem. For parameters c1 > 0, . . . , cn > 0, consider the function

F (u1, . . . , un−1) = EP
(
uα1
1 · · ·uαn−1

n−1 · (−c1u1 − · · · − cn−1un−1 + cn)
αn

)
,

defined on the domain D defined by u1 > 0, . . . , un−1 > 0, c1u1+ · · ·+ cn−1un−1 < cn
(α1, . . . , αn are r.v.’s on some probability space (Ω,F ,P)). Assume that αi > 0 and∑

1⩽k⩽n, k ̸=i αk < 1 P-a.s. for any i (i = 1, . . . , n). Then the function F is strictly
concave on D.

Corollary. Under the conditions of the above theorem, the function F in the
domain D has a unique local maximum which, simultaneously, is a global maximum.
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A.L. Yakymiv (Steklov Mathematical Institute of Russian Academy of Sciences,
Moscow, Russia). Limit behavior of ordered statistics on the cycle lengths
in random A-permutations. 14

We fix a set of natural numbers A. By Tn(A) we denote the set of permutations
of degree n whose cycle lengths lie in A (the so-called A-permutations). We consider
a random permutation τn uniformly distributed on the set Tn(A). Let ζn be the total
number of cycles and ηn(1) ⩽ ηn(2) ⩽ · · · ⩽ ηn(ζn) be the ordered statistics on the
cycle lengths in the permutation τn. We assume that the sequence |Tn(A)|/(n − 1)!
varies regularly at infinity with index ϱ > 0. We fix a real x and define, for m ∈ N
and t > 0,

r = exp

(
m

ϱ
+ x

√
m

ϱ

)
, l(t) =

∑
i∈A, i⩽t

1

i
.

Theorem 1. Let (ϱ lnn−m)/
√
lnn→ +∞ as n→ ∞. Then

P{ϱ ln ηn(m)⩽m+x
√
m } = Φ(z)+

1

405l3/2(r)

(
10Φ(3)(z)+Φ(5)(z)

)
+O

(
1

ln2 n

)
;

z = y − 1

108µ
(y3 − y), y = 3

√
µ

((
ν

µ

)1/3

− 1

9µ
− 1

)
, µ = m+ 1, ν = l(r).

14This work was supported by the Russian Science Foundation under grant no. 19-11-00111-Ext ,
https://rscf.ru/en/project/19-11-00111/.
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This theorem generalizes the main result of [1] to the case A ̸= N.
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E.B. Yarovaya (Lomonosov Moscow State University, Moscow, Russia). Limit
behavior of particle populations in a branching random walk. 15

For a critical branching random walk (BRW) on Zd from [2], [3] with transition
probabilities p(t, x, y), the theorem given below implies that the growth of the con-
ditional expectations for the populations µ(t, x) and the subpopulations µ(t, x, y) of
particles is slower than that with the presence of sources of the same intensity at each
lattice point (see [1]).

Theorem. For a critical recurrent BRW on Zd with one branching source of
particles with µ(0, x, y) = δy(x) and t→ ∞, the following assertions hold :

(a) If p(t, x, y) ∼ γdt
−d/2, γd > 0, d = 1 or d = 2, then

E[µ(t, x) |µ(t, x) > 0] ∼ Kd(x)vd(t), E[µ(t, x, y) |µ(t, x) > 0] ∼ Kd(x, y)v
∗
d(t);

(b) if p(t, x, y) ∼ hd,αt
−d/α, hd,α > 0, α ∈ [1, 2), d = 1, then

E[µ(t, x) |µ(t, x)> 0]∼Vd,α(x)ud,α(t), E[µ(t, x, y) |µ(t, x)> 0]∼Vd,α(x, y)u
∗
d,α(t),

where v1(t) ∼ t1/4, v∗1(t) ∼ t−1/4, v2(t) = u1,1(t) ∼
√
ln t, v∗2(t) = u∗1,1(t) ∼

√
ln t/t,

u1,α ∼ t(α−1)/(2α), u∗1,α ∼ t(α−3)/(2α), α ∈ (1, 2).
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V.G. Zadorozhnii (Voronezh State University, Voronezh, Russia). Optimal
control of a linear stochastic system.

We consider a control linear system of differential equations dx/dt = ε(t)Ax +
bu(t), x(t0) = x0 with the efficiency criterion for the control

I =
1

2

∫ t1

t0

∫ t1

t0

[
⟨B(s1, s2)E[x(s1)],E[x(s2)]⟩+ C(s1, s2)E[u(s1)]E[u(s2)]

]
ds1 ds2

+
1

2
⟨GE[x(t1)],E[x(t1)]⟩.

15Supported by the Russian Foundation for Basic Research (grant 20-01-00487).
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Here t is the time, t0, t1 are given numbers, x is an n-dimensional vector function,
A is a real matrix of size n × n, b is an n-dimensional vector, u(t) is a scalar func-
tion (control), x0 is a random vector, ⟨ · , · ⟩ is the inner product, ε is the random
process defined by the characteristic functional ψ(v), B(s1, s2) is a given self-adjoint
nonnegative matrix function of size n× n, C(s1, s2) is a given positive function, G is
a nonnegative matrix of size n × n, and E[x(t)] is the expectation of the random
process. Consider the function χ(s) = χ(t0, t, s) of s, which is defined by sign(s− t0)
if s lies in the closed interval with endpoints min[t0, t], max[t0, t], and is zero otherwise.

Theorem. If the expectation E[u(t)] is a solution of the above problem, then it

satisfies the integral Fredholm equation
∫ t1
t0
W (s, t)E[u(s)] ds = F (t), where

W (s, t) =

∫ t1

s

∫ t1

t

⟨B(s1, t)ψ(−iχ(s, s1)A)E[x0], ψ(−iχ(t, s2)A)b⟩ ds2 ds1

+ C(s, t) + ⟨Gψ(−iχ(s, t1)A)b, ψ(−iχ(t, t1)A)b⟩,

F (t) = −
∫ t1

t0

∫ t1

t

⟨B(s1, s2)ψ(−iχ(t0, s1)A)E[x0], ψ(−iχ(t, s2)A)b⟩ ds1 ds2.

A.A. Zamyatin (Lomonosov Moscow State University, Moscow, Russia),
V.A. Malyshev (The author is deceased. Former address: Lomonosov Moscow
State University, Moscow, Russia). Random regular flows of classical particles.

We consider a system of N interacting particles (of unit mass) 0 = x1(0) <
x2(0) < · · · < xN (0) < xN+1(0) = L on the circle (x1(0) = xN+1(0)) with interaction
potential energy U = (ω2/2)

∑
(xk+1 − xk −L/N)2, where L is the circle length, and

xk are the particle coordinates. Each particle interacts with neighboring particles
and is subject to the dissipative force −αẋk, α > 0, and a random driving force f(t),
which is a second-order stationary random process (Ef2(s) < ∞) with continuous
covariance function and expectation f = Ef(s).

It is assumed that the particles exchange velocities at collisions. Hence the original
order of particles is preserved at any time.

Let µ(du) be an orthogonal measure for the centered process f(s)− f .

Theorem. (1) The differences qk(t) = xk+1(t)−xk(t) are deterministic variables,
and qk(t) → L/N as t→ ∞.

(2) There exists a stationary process

ξ(t) =
f

α
+

∫
R

eitu(α+ iu)−1 µ(du)

such that, for any k = 1, . . . , N , with probability 1, ẋk(t) − ξ(t) → 0 as t → ∞.
In particular, if f(t) ≡ f, then ẋk(t) → f/α.

The rest of the talk is concerned with regularity conditions [1] of the process
{xk(t)}; the Euler equations are obtained for any time t in the limit N → ∞.
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A. I. Zhdanok (Institute for Information Transmission Problems of the Rus-
sian Academy of Sciences (Kharkevich Institute), Moscow, Russia), A.K. Khu-
ruma (Tyva State University, Kyzyl, Russia). Decomposition of finitely additive
Markov chains and asymptotics of their components. 16

We consider Markov chains generated by a finitely additive transition probability
P (x,E) defined on an arbitrary discrete space (X,Σd). Such Markov chains are
studied using the operator approach, where P (x,E) generates a Markov operator A
acting in the space of finitely additive measures [1]. We decompose P (x,E) and A in
a sum of countably additive and purely finitely additive components: P = Pca + Ppfa

and A = Aca +Apfa. The following theorem is proved.

Theorem. Assume that, for a finitely additive combined Markov chain, the set
Qy = {x ∈ X : Pca(x, {y}) > 0} is finite for any y ∈ X. Then the component Aca

sends all purely finitely additive measures into the same measures. Moreover, the
sequences of norms of countably additive components ∥µn+1

ca ∥ and purely finitely addi-
tive components ∥µn+1

pfa ∥ for the sequence of measures µn+1 = Aµn converge exponen-
tially fast and uniformly to 0 and 1, respectively.

The proof of this result, together with some related theorems, is given in [2].
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M.V. Zhitlukhin (Steklov Mathematical Institute of Russian Academy of Sci-
ences, Moscow, Russia). Optimal growth strategies in a market model with
large number of agents. 17

Let strongly continuous positive semimartingales Xn
t , n = 1, . . . , N , be defined

on a filtered probability space (Ω,F , (Ft)t⩾0,P).
For continuous adapted processes λt, µt with values in the set ∆N = {x ∈ RN

+ :
x1 + · · ·+ xN = 1} and constants ρ > 0, w0 > 0, consider the system of equations

Vt =
1

ρ

N∑
n=1

Xn
t , Sn

t = µn
t Vt (n = 1, . . . , N),(1)

dWt =

N∑
n=1

λntWt

Sn
t

(dSn
t +Xn

t dt)− ρWt dt, W0 = w0.(2)

Theorem. There exists an a.s. unique process µt such that, for any process λt,
if (1), (2) have a solution Wt, then the process Wt/Vt is a local martingale.

This result has the following economic interpretation. Assume that processes Xn
t

define the intensities of dividend payments from N assets, and Sn
t define their prices,

which are controlled by the strategy µt of a representative agent with net asset Vt.
Then, for any strategy λt of the “small” agent, its asset Wt cannot grow faster than
that of the representative agent in the sense that Wt/Vt is a local martingale.

We also show how to find the process µt in an explicit form.

16Supported by the Russian Foundation for Basic Research (grant 20-01-00575 a).
17Supported by the Russian Science Foundation (grant 18-71-10097, https://rscf.ru/project/

18-71-10097/).
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A.V. Zorine (Lobachevsky State University of Nizhny Novgorod, Nizhny Nov-
gorod, Russia). On stationary distribution of a service process of nonordi-
nary flows with time separation for algorithm threshold switching.

We consider the service system from [1]. Assume that a random external environ-
ment has one state, the number of input flows m is 2, the input flow Πj is a Poisson
flow of groups, and {f(b, j); b = 1, 2, . . . } is the distribution of probabilities of the
group size over the flow Πj , j = 1, 2. Let us study conditions for existence and
a method for evaluation of the stationary distributions of the homogeneous Markov
random process {(Γ(t), κ1(t), κ2(t)); t ⩾ 0}. Assume that, in the stationary regime,

Ψ(z1, z2, r) = E
(
z
κ1(t)
1 z

κ2(t)
2 I(Γ(t) = Γ(r))

)
, fj(j) =

∞∑
b=1

zbjf(b, j),

|z1| < 1, |z2| < 1, and Q(0, 0, 0) = P({Γ(t) = Γ(0), κ1(t) = 0, κ2(t) = 0}).
Theorem 1. For r = 1, 2,

Ψ(z1, z2, r)
(
λ1(f1(z1)− 1) + λ2(f2(z2)− 1)− βr

)
+

2∑
j=1

βjE
(
z
κ1(t)
1 z

κ2(t)
2 I

(
{Γ(t) = Γ(2+j), h(κ1(t), κ2(t)) = r}

))
+ λrfr(zr)Q(0, 0, 0) = 0,

Ψ(z1, z2, 2 + r)
(
λ1(f1(z1)− 1) + λ2(f2(z2)− 1)− βr

)
+ βrz

−1
r

(
1 + pr,1(z1 − 1) + pr,2(z2 − 1)

)
Ψ(z1, z2, r) = 0,

(λ1 + λ2)Q(0, 0, 0) = β1Q(3, 0, 0) + β2Q(4, 0, 0).

The equations in Theorem 1 are solved for the threshold switch function: h(x1, x2)
is 1 for x1 > L ∈ {0, 1, . . . } or for 1 ⩽ x1 ⩽ L and x2 = 0; 2 for x1 ⩽ L and x2 ⩾ 1;
and 0 for x1 = x2 = 0.
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